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FIXED-ENDED AND HINGED BELICOPTER BLADES
IN HOVERING AND VERTICAL FLIGHT

By Morris Morduchow
SUMMARY

A theoretical analysis 1s gliven of the frequency and damping
characteristics of the free modes of vibrations of halanced Pixed—ended
and hinged elastlic helicopter rotor blades in hovering and vertical
flight. Torsional vibrations, bending vibrations in flapping and in -
lagging, and coupling between the flapping and lagging motions ars
considered. Expliclt methods and formulas for the calculation of
natural frequencies and logarithmic decrements of the principal modes
are developed, from which general conclusions are rigorously drawn.
Flutter of helicopter blades, which may occur when the bledes are
unbalanced, 1s briefly consldered on the basis of quasi-—stationary flow,
end simple criterions are derived for the stability of the coupled
torsional and flepping vibrations in such cases.

INTRODUCTION

The purpose of this Investigation is to present under ome cover,

'in a brief and simple fashion, a comprehensive analysis of the frequency

and damping characteristics of elastlic hellcopter rotor blades in
hovering and vertical flight when they perform small vibrations gbout a
state of static equilibrium. Effects which appear not to have been
thoroughly investigated heretofore are considered in detail here. These
include;: Consideration of the effect of boundary conditions on the
centrifugal contributions to the natural vibration frequenciles of
rotating blades in bending; the effect of frees torsional vibrations on
the flapping and lasgging vibrations of mass-balanced blades; the effect
of Coriolis, centrifugal, and aerodynamic coupling between the flepping
and lagging vibrations of a helicopter blade; and a comparison between
aerodynamic and internal damping in the principal modes of rotating
beams in bending and in torsion.
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The analysls and general formulas have been developed for blades
having any taper and cross—sectional distributlion, with the restric—
tlon that the shear center and the center of gravity of a cross section
coincide (as is usually the case, for example, for a single~tubular—
spar section). Moreover, the case of mass—balanced blades, that is,
blades whose cross—sectlional centers of gravity coincide with the aero—
dynamic centers, has been emphasized, since attempts are usually made
in practice to achieve such a condition. (See reference 1.) Neverthe—
less, the vibrations of unbalanced blades, characterized by coupling
between flapping and torsion with the resulting possibility of flutter,
have been brlefly anaelyzed.

In the case of hinged blades, 1t has been assumed that the flapping
(horizontal) and lagging (vertical) hinge axes are intersecting and
perpendicular to the blade axis, so that no change in pitch angle of-a
blade 1g caused by elther flapping or lagging.

The general procedure in this analysis consists first in setting
up the equations of motion of a rotating helicopter rotor blade in
hovering and vertical flight in torsion and in bending in two mutually
perpendicular directions (flepping and lagging) and then in solving
these equations elther exactly or else approximately by the Rayleigh—
Ritz method.

Unless otherwlse stated, the details of the mathematical derive—
tions have been almost entirely omitted here for the sake of brevity;
however, these details have been worked out by the present author in an
unpublished paper entitled "A Theoretical Analysis of the Elastic
Vibrations of Fixed—Ended Helicopter Blades in Flight."

This work was conducted at the Polytechnic Institute of Brooklyn
under the sponsorship and with the financial assistance of the National
Advisory Commlttee for Aeronsutics. The author wishes hereby 1o express
his appreclation for the kind aid given him by Dr. Hens J. Reissner.

The author also expresses his gratltude to Messrs. Charles Chin,
Constantine Dolkas, Francis G. Hinchey, and Frank J. Romano for thelir
assistance in the numerical calculatlons.

SYMBOLS
A cross—sectlonal area of a blade
45 . value of A at root of a blade

B downwask factor, equation (2b)
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dimensionless parameter 14 i

length of chord of a blade section
value of ¢ at root of blade

value of profile—drag coefficient of blade section when
absolute angle of atback is equal to 65 + 61

value of profile—drag coefficient of blade section at
zero absolute angle of attack

dimensionless distance between midpoint and shear center
(here, also center of gravity) of a blade section
(fig. 1)

modulus of structural blade material

distance between polnt of attachment of blades and rotor
axis of rotatlon; eccentriclty

shear modulus of structural blade material
acceleration due to gravity

internal damping coefficlents In flspping, lagging, and
torsion, respectively

line of intersection of plane (x,y) of rotation and plane
of cross section of blade (fig. 1)

structurel moments of inertia of a blade section for
bending in flapping and in lagging planes, respectively

values of I; and Io» at root of a blade-

mass moments of inertia per unit of blade length of a
cross section about princlpal axes through center of
gravity (here, also shear center)

mass polar moment of inertie per unit of blade length of
a blade section ghout principal axes through center
of gravity (here, also shear center)

values of IP and J at root of a blade
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1= -\/ -1

J torsional moment of resistance of a blade section

3 dimensionless distance between center of gravity (here,
also shear center) and aerodynamic center of a blade
section (fig. 1)

Ky - dimensionless bending—stiffness parameter (EIlo/cAoﬂell’)

Ky dimensionless bending-stiffness parameter <EI20 0A092 lh')

k constant in the relation c3 = (c + ka?

% = ()0

1 length of blade

n number of blades in rotor system

My dimensionless torsional—rigldity parameter (GJO/QeIPoza)

M, = Tnay ~ Tnin

n subscript indicating a given principal mode of vibration

ple3/1 2

P dimensionless parameter | = Ip 1—2-+ &

o}

P complex frequency; if p =—R % iw (R and o real)
then a)/E:r is the_netural frequency in cycles per
second, while 2x g is the logarithmic decrement

p12002

Q dimensionless parameter ([xj I_p

o

q dimensionless complex frequency (p/q)

R tip radius of a blade from axis of rotation

r local radius of a blade element from axis of rotatlion

time
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v dimensionless bending (lagging) deflection in the direction
of a principal axis y; (fig. 1) of a blade section

¥ . gross welght of hellcopter

v . dimensionless bending (flapping) deflectionm in the direction
of & principal axis 1z;  (fig. 1) of a blade section

"o e |
— c W r
LORN I L LY

0
1
W) =f o5 () at
0

Induced downwash veloclty In steady state

i,0
wo'/z local slope of a deflected blade in flapping In the
_ steady (static) state
o local #&bsolute ancle of attack of a blade section
Bgsdy aerodynamic and internal (structural) logarithmic decre—
ments, respectively
€ eccentricity ratio (e/1)
e local twisting angle of & blade section
1
— c re
o(t) = o 6(e,t) de
0
6, design, or initial, blade angle (fig. 1)
61 angle between zero—lift line and principal axis y; of
a blade section (fig. 1)
3 dimensionless distance along a blade, measured from root
p alr density

g average denslty of blade ﬁmmerial
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1 v
T(¢) dimensionless centrifugal—force parameter f—% at
£ O
Q angular speed of rotor system, radlans per second
L |
o, natural frequency of vibration of an elastic rotating
blade in a given principal mode
®sn value of 1f blade had no bending stiffness, that is,
if Ky ‘2“&2 =0 -
Ogn value of o, 1if @ =0 .
-
ot
-
ot -
BASIC EQUATIORS .
The basic differentisl equations for the small fiapping, lagging, R

and torsional vibrations, respectively, of a helicopter blade in
hovering and vertical flight about 1ts position of static equilibrium
can be written in the following nondimensional form:

o(%) £—<9-31'5>=o (1a)
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8 =0 (1b)

2
c r(w 1 _
Q_°o> _Z__BI_ w)-o _ (1c)

Bquations (la) and (1b) represent the equilibrium of the elastic,
internal damping, centrifugsl, inertia, and aerodynamic loads at any
point ¢t per unit length along a blade. In equation (la) these loads,
as well as the dimensionless displacement w, are in the dlrection of
the principal axis z; of a cross ssction of a blade (see fig. 1)}.
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In equation (1b) the loads and the displacement v are in the direction
of the other principal axis jy; of a cross section (fig. 1). If the
blades are hinged then w and v represent the sum of the elasiic
deflections and the components of the rigid-body dlsplacements in the
directions of the principal axes z; and y;, respectively.

The aerodynamic loads here have been derived, as in reference 2,
by use of the three—dimensional Kutta—Joukowskl theorem for quasi—
stationary flow. The induced downwash, however, has now been assumed
as constant throughout the rotor disk and as derivable by the simple
momentum theory. (See reference 3.) The only difference, in fact,
between the hovering state and the state of uniform vertical climbing or
descending in equations (la) to (lc) lies in the values of the downwash
velocity wy o and of the downwash parameter B.

By the momentum theory, the values of Vi,0 and B for a heli-
copter climbing vertically at a constant speed of v, can be shown to

be:
20 2
aR \/ (v 21rpR,492 (2e)

1 ' -1
c r ¥1,0R AL 1 1R
o %o ( + D)mcom o (1 + kD> m 1

(2p)

where tﬁe drag of the helicopter in climbing has been assumed to
be kpW, and W 1is the gross welght of the hellcopter.

It has been assumed, in the derivation of equations (la) to (lc),
that the profile—drag coefficient 4, of a blade sectlon varies

parabolically with the angle of attack.
From the condition that the static thrust must support the gross

weight of the helicopter, the required value of the absolute pitch
angle (6, + 61) Of a blade, assumed constant along 1ts length, is

found to be:
W Wi o f cTr

90 + 6 = (3)

f I3
c
o ©

d§

bdl‘d =
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‘The mechanical significance of each of the terms appearing in
equations (la), (1b), and (lc) is as follows. The terms proportional
to Ky, EKp, or M; represent the elastic resistance, while those
proportional to gy, &y, Or &g represent internal damping. (See
reference 4.) The terms (tw!)' and ﬁ% 6ov 1in equation (la), the

terms  (Tv')', Aio- v, and K% fov 1in equation (1b), and the Mp—term in
equation (lc) are due to the centrifugal loads. The terms with W, ¥,
and @ represent inertia loads, while the terms 2 fi E%l-ﬂ

and ﬁ% E%l g- give the Coriolis effect. In equations (la) and (1b)

the terms proportional to C represent the aerodynamic loads, while in
equation (lc) these loads are represented by the terms proportional
to Q and to P. For mass—balanced blades, Q = 0. The terms in W

and § give the effect of induced downwash. Finally the term —g— ﬁ
in equation (1b) represents the effect of the welght of a blade.

TORSIONAL VIBRATIONS

From equation (1lc) it can be seen that i1f the blades are mass—
balanced, lmplyimg § = O, then the torsional vibrations will not be
coupled to the flapping vibrations. Thls case of balanced blades is the
one which is treated in the present section on torsional vibrations and
in the following two sections on vibrations in flapping and lagging.

Frequency ch&ractefistics.—-By putting

o(t,t) = 6(&)eP" (%)

into equation (1lc) with § = 0, and neglecting damping for the present,
the following equation is obtained for 6(¢) and g E'%‘

J Imax - Imin 2 Ip

Ml<3;e') Mg(Imax Imirl>+q—-9=0 - (5)
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If the blades have a yniform cross—sectional distribution and have

fixed pitch at the root (8 =0 at ¢ = 0), then the following solution
is obtained for the princlpal torsional modes of vibration:

8,(t) = sin n-’et-g
n odd, n21 7y (6)

2
2 ne D e 2
o T1 Y o ® M,

The term en(g) represents the principal modes of deflection,

while 595 —qn2 is the natural frequency in cycles per second in
"n+l,, "

the _Q—th mode, 1f @ 1s In radlans per second.

It 1s significant to note from the results of equations (6) that,
since Mp, which represents the effect of the centrifugal torque, 1s in
actual cases negligible, the natural frequencies, as well as the modes
of vibration, of a rotating helicopter blade iIn torslon are virtually
the same as those of the same blade when 1t 1s statlonary (@ = 0).

This conclusion 1s valid for tapered, as well as for rectangular, blades
(cf. appendix A).

If the blades have a variasble cross—sectional distribution, then
the natural frequencles of the various modes of vibration can be deter—
mined by the procedure, based on the Raylelgh-Ritz method, shown
explicitly in appendlx A.

Damping characteristics.— Let the natural frequency of the "kth"

principal mode of vibration without damping be w,,, and let the corre—
sponding mode of deflection be 6,,(t). Then it may be assumed that for
this mode with damping the deflection shape will be given approximately
by 6,,(t). Therefore, with the assumption

6,(£,%) = o, (£)e""

for the demped vibrations of the kth mode, where p may now be complex,
differentiation of the integral in condition (Al) of appendix A with
respect to b leads to a quadratic equation in g whose roots (with My
neglected) indicate the following values of the natural frequency a4,
aerodynamic logarithmic decrement San’ and internal logarithmic
decrement &y, of the kth mode:
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o ()", 2 (M

f 2 5 () a
0 IPO no
Byn = &g (9)

where

-8o (T2)

Equation (7) gives the correction, due to damping, in the natural
frequencles. This correction will usually be found to be negligible in
all modes above the fundemental.

Equation (8) shows that the aerodynamic logarithmic decrement in
any given principal mode has an order of magnitude of 55%7 and varies

approximately inversely as the natural frequency. Thus, the aerodynamic
logarithmic decrement decreases with the mode of vibration. Equation (9)
shows that the internal logarithmic decrement is, on the other hand,
independent of the natural frequency and therefore remasins the same in
all modes. This result for the intermal damping is due to the negligible
effect of the centrifugal twisting couple 1n any cross section of a
rotating hellcopter blade.

Since in general gz << P, it follows from equations (8) and (9)
that in the fundamental, and possibly second, mode the aerodynamic
damping will be greater than the internal damping. In the high modes,
however, the intermal damping will predominate.
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It should be noted that, although equation (9) indicates the same
internal logarithmic decrement for stationary as for rotating beams,
equation (8) shows that there will be no aerodynamic damping if the beam
1s stationary (8gy =0 1if @9 =0).

Numerical example.— Consider a blade of constant cross section along
the span, with the data of figure 2. Then ,(f) = sinn £t for the

Rtn mode. Moreover, 1t s found that My = 37.0 end P = 7.35. In
virtually all cases, Mp S 1. EHere let Mp = 0.7. Finally let 8g = 0-05.
From equations (6) it 1s found that (damping neglected)

‘_‘_:_0 = \/9:L.0n2 +0.7T= \/91-0n2 = 9.56n

The fundamental (n = 1) natural frequency in torsion is thus quite
high, being here almost 10 times the protor angular speed. From equa—

tion (7a), m,, = 7.35 {0.25 + 0.1211 + 0.239n. For the fundamental

Il
mode (n = 1), equation (7) therefore glves:

®q _ _ 2 _ .
=== \191.0 (2.82)= = 9.10

indlcating thus a decrease, due to damping, of about 5 percent in the
fundamental frequency. The effect of the damping on the natural
frequencies in the higher modes (n =3, 5, - . .) will be mmuch smaller,
as can be seen from equation (7) with the expressions for N, and E%Q
here in terms of n. From equation (8), it is Pound that Bg1 = 1.780

and By, wm 1.20 for n 2 3. Moreover, 83 = 0.15T0 for any mode.

Thus 1n the fundamental mode the aerodynamic damping is here over

10 times as great as the internal demping. In the second mode (n = 3),
however, 5, 1s reduced to less than one—fourth of its value in the
fundamental mode, while 81 remains the same. In the f£ifth and higher
modes (n 2 9), the internal damping exceeds the merodynamic damping.

BENDIRG VIBRATIONS IN FLAPPING

In considering bending vibrations in flapping the small coupling
between the flapping and lagging vibrations will be neglected., Moreover,
it will be assumed here that the blades are mass-balanced. In that case
the torsional vibrations can be determined first, as in the preceding
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section, by obtaining 6 explicitly as a function of ¢ eand +. This
known function can then be substituted for 6 into equation (1a), which
is the basic equation for the motion of g blade in flapping.

Froquency characterlstics.— The natural frequencies of the free
vibration modes of a rotating blade in Pflapping are determined by the
equation

I .“ 121 A W .
Kl(-Iiw') ~ (rw?) +A—.OQ_2=0. (1a?)

The effect of damping is not included in equation (la!). By putting

w(t,t) = w(g)e?T

P
q = Q
equation (la') becomes:
: "
Kl<:I[L w“) - (tv)' + 2 q°w =0 (10)
1o A

The values of g2 determined by equation (10) for any principel
mode of yibratlon can be expressed approximately in the form (see
reference 5):

L, =49 +q _ (11)
where qen2 is the value of qﬂ2 when the beam is stationary (g = 0),
and qcn2 is the velue of qn2 when the blade is hypothetically
rotating without bending stiffness (K] = 0). The values of %en

represent the effect of the elastic resistance of the blade, while the
values of q., represent the effect of the centrifugal loads.

The following remarks concerning relation (11) are pertinent. It
can be shown (appendix B) that relation (11) would be exact if and only
if the centrifugal loads would have no effect on the modes of deflection
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of a rotating beam. It can also be shown (appendix B), however, by a
simple consideration of boundary conditions, that equation (11) cannot
be an exaqt general statement for elther fixed—ended or hinged blades
and that the centrlifugal loads must therefore in general have some
effect on the modes of deflectlon. It should be further noted that the
values of gq,, must, according to relation (11), be independent of the
boundary conditions of a blade (cf. appendix in reference 5). It can
be shown (appendix B), however, that there are theoretically no exact
values of qcn2 for a blade fixed at the root. (This may be considered
as a simple proof that relation (11) cannot be exact for fixed—ended
blades.)

In spite of the fact that equation (11) cannot be an exact general
statement, this relation glves sufficiently accurate results for .
practical purposes. Thls 1s due to the fact that; although the centrif=
ugal loads do have an effect on the modes of deflection of a rotating
beam, this effect 1s ordinarily small both for fixed—ended and hinged
blades. (See references 6 and T.) As a numerical check on the accuracy
of relation (11), the values of the natural frequencies of a hinged
blade were calculated by solving equation (10) without the use of
relation (11). Approximate solutions for the lower modes (see appendix B
for details of the method) showed.that the natural frequencies as func-
tions of the paramester K; could to a high degree of approximation be
represented in the form of equation (1l). Moreover, a numerical check
(appendix B) was made on the effect of the root conditions of a blade
on the centrifugal contributions qcn2 to the negative squared natural
frequencies, and this effect was found to be practically negligible.

The values of Qun= 1n relation (11) depend only on the mass

distribution ( z§ (¢) of & blade along its length and are the same
o
o]
for a fixed—ended as for a hinged blade. The values of qeng, on the
other hand, are in general directly proportional to the paramster K;
of a blade and depend on the boundary conditions at the blade root, as
well as on the cross—sectional distribution (i.e., plan form).

L3
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For blades of gonstent cross section, the values of qen? and g,

in the wvarious principal modes are as follows:

© Pixed—ended blades:

_qenQ/Kl =12.36, 481, . . ., (-2’5 n)LL (approx.), . .

n odd,n25

—q_cn2=l, 6’ . . L) n(&—l)’ . - »
n a positive integer

hinged blades:

Iy
‘qen?/Ki =0, 236, . . ., KMQF + %) (epprox.), . . .
n & posltive integer

—qcn2=l, 6, « « .5 n(en-1), .

n & posltive integer

For blades of yariable cross section a slmple procedure, based on

the Rayleigh-Ritz method, of calculating the frequency characteristics
is given explicitly Iin appendix B.

The values of the frequency ratios /g in the various modes of
vibration of a blade in flapping are evidently functions of only one
parameter, Ki, in addition to being .dependent on the plan form of the
blade. Typical values of Kj; are usually small. TFor the single—
tubular—spar section in figure 2, for example, K, = 0.00400. Conse—
quently, the actual contributlon of the elastic resistance of a heli-
copter blade to the natural flapping frequency in the fundemental mode
18 small in comparison with that of the centrifugal forces. In the

15

higher modes, however, the relative importance of the elastic resilstance

rapidly increaeses. The natural frequency of a fixed—ended blade in any

principal mode will, of course, be higher than that of the same blade
when it is hinged. If K; 1is of the order of magnitude of unity this
difference will be especilally great in the lower modes. However,
when K; <<1 (as in the’‘tubular—spar section, fig. 2), then the
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natural frequencles of a fixed—ended blade are only slightly higher than
those of a hinged blade. These conclusions are, in part, illustrated
by figure 3 and figure 4, where numerical results are plotted for &
uniform blade of low bending stiffness hinged at ths root and fixed at
the root, respectively.

Rigid—body osclllation ss a mode of vibration.— If the blades are

hinged at their roots, and 1f thelr flapping hinges pass through the
axis of rotation of the rotor system, so that % = ¢, then the deflec—

tion shape w = at, where a 1s a constant, will be an exact solution
of equation (10) with g2 = —1, regardless of the plan form of the
blades. This shows that, if damping and small coupling effects are
neglected, then a rigid—pody oscillation of a blade in flapping will be
an exact fundamental mode of vibration. In this mode, ®w = Q exactly.

If, however, aerodynamic damplng is considered, implying additlion of
the term C %‘:’ % ~Bw) to the left side uf equation (la'), then 1t
o]

can be seen that equation (10} will no longer be exactly satisfied
by w = at. In this case, the rigld-body oscillations will be an
approximate, but not exact, mode of vibration of the blades.

Damping characterlstics.— Putting w(g,t) = w(g)ePt into equa—

tion (la') with the term C & éLGT —-Bw) edded to the left side, the
o

following equation for w(g) and q 1s obtained:

T .u A o
Kl<fll_ow"> - (rw*)' +}—§qu+cf—o-q(w—3wl)

By mathematically transforming thls equatlon into™a stationary condi-—
tion,l and applying the Rayleigh method with the assumption that the
damping has a negligible effect un the principal modes of deflection,
the following relations are obtained for the effect of the asrodynamic
damping on the natural flapping frequency of any mode (denoted by
subscript n) and for the aerodynamlic logarlthmic decrement— 35 in
any mode 1in flapping. _ oo .

11t is interesting to note that it is here possible to derive
rigorously the stationary condition of an integral for a nonconservative
syetem after making the substitution w(g,t) = w(t )ePt.

2Tn terms of the value of the complex frequency ¢ a for any mode
with demping, equation (13) implies: n _

9g T (l 7nn/mnn)'— 1 ggg
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5 5
-\ - (= =
_ _ 7on/%n
Bgn = T /0 (13)

where w,q 1s the natural frequency for the damped mode, @, , is the
corresponding natural frequency wilthout damping, and Ynn and .
are constants for each mode, defined as:

1 1 2
cr 2 c r
Yop = C ey Wno_(ﬁ) it — B S5 3 woo(8) dg
0 0
1
A 2

@ n = 7ig Yo (&) 4t

0

Hers, “ﬁo(E) is the mode of deflection without damping.

The internal logarithmic decrement, derived and discussed in detail
in reference 4, is: .

2

[43)
Bin = & a:el (1k)

From equation (12), which gives the effect of the aserodynamic
damping on the values of the natural frequencles, it follows that this
effect decreases with the mode and will in actual cases be negligible
in all principal modes with the possible exception of the fundamental.
In the fundamental mode, in fact, the demping may in some cases (namely,
those cases for which the paramster C 18 sufficiently large) be so
heavy that thls mode will consist of an unoscillating decaying motlon
instead of an oscillating motion.
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Since the actual value of -7, /&, will be roughly the same (of
the order of magnitude of 0/2) for any mode, it follows from equa—
tion (13) that B8y, will decrease with the mode, in virtually inverse
proportion to the natural frequency. Comparison of actual orders of-
magnitude (O(C) =1, 0(g,) = 0.05) shows, according to eguations (13)

and (14), thet except in the very high modes, where Bgn + Byp & 8yp & ng,,

the aerodynamic damping will exceed the internal dasmping. The latter is,
in fact, negligible in comparison wlth the aerodynamic damping in the
fundamental mode. Because of the aerodynamic effect, the flapping
vibrations in the lower modes will in general be highly damped.

Numerlcal example.— For a uniform blade with the data of figure 2,
one finds: K; = 0.00400, C = 1.T4, and B =0.532 (equations (2a)
and (2b) with v, =0 and R = 1). Eor fixed—en ed blades, it 1s
permissible to substitute wpo(E) = — 43 + 66 into equations (12)
and (13) for any mode.3 For hinged blades, the substitution W, (E) =¢
may be made in these equations. It is thus found (assuming T = §
that B0 = 2—% = 1.105 when the blade is fixed—ended, and %—‘E 0.995
when the blade is hinged. Moreover, for fixed—ended blades,

%9 V12.36 x 0.00k + 1 = 1.024; for hinged blades,

9%9 yO X 0.00k + 1 =1 in the fundamental mode Without damping.

With aerodynamic damping taken into account, these fundamental frequen—
cles change thus:

(B

Q )f.ixed—end.ed

(3~ (7~ -t

Thus aerodynamic damping diminishes the fundamental frequency here by
about 13 percent for both ths fixed-ended and the hinged blade.

- \/(1.02&)2 - (i'%ﬁi)e - 0.862

In the second and highsr modes, however, ths effect of the damping
on the natural frequencles 1s here negligible, since ths value
of ( /h) rapldly increases (over 6 in the second mode), while the

3Since the value 7nn/ahn does not vary greatly with the func—
tlon wp (&), it-follows that, in actual calculatlions, rough assumptions
for wpo(k) in equations (12) and (13) will suffice to give sufficlently
accurate results for practlcal purposes.
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value of g7nn/2ahn 2 remains approximately the same, about 1/4 here.

The total logarithmic decrements (8an + 84n) for both the hinged and

fixed—ended blades, with gy assumed as 0.05, are shown in Pigures 5
and 6, respectively, plotted against the principal mode of vibration.
For comparison with internal damping, the asrodynamic logarithmic
decrements are also plotted separately in these figures.

Effect of torsional vibrations on flapping vibrations.— The free

torsional vibrations of a mass—balanced blade in any principal mode

have an effect on the free flapping vibrations of the blade simllar to-
that which an extermal damped harmonic load would have, if the frequency
and demping of this load are the same as the frequency and damping of
the corresponding torsional mode. This effect can be determined by

substituting the known function 6 = 61;1(§)epn~JG for any principal mode
in torsion (cf. TORSIONAL VIBRATIONS) into equation (la) and then
solving for w(t,t). By this procedure i1t can be shown that corre—
sponding to each principal mode of vibration in torsion of frequency w,
and logarithmic decrement &, there will appear in general a component
of vibration in flepping of the same frequency and logarithmic decrement.
It can be shown, however, that in all actual cases the ratio of the
amplitudes of these "quasi~forced" flapping vibrations to those of the
corresponding "quasi—forcing" torsional vibrations will be of the order

c
of magnitude of —1l 120 1 . Since in practice 99->> 1

(/)2 % 2 anj .
(cf. TORSIONAL VIBRATIONS) it follows .that the relative amplitudes of
the quasi—forced flapping vibrations will be so small that the effect
of Pree torsional vibrations on the flapping vibrations of mass—balanced
blades may in practice be neglected.

BENDING VIBRATIONS IN LAGGING

The characteristics of the lagging vibrations of a helicopter
blade, virtually in the plane of rotation, are dlscussed in this section.
Coupling effects are here neglected and are discussed in the next
section.

Frequency characteristics.— According to equation (1b) the natural

frequencies of the free uncoupled lagging vibratlions of a blade, with
demping at first neglected, can be determined from the following
ordinary differential equation for v(¢) and q:

Ke(%z— v") - ) (@ - 1v 2o (15)
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A comparison of equation (15) with equation (10) shows that

In I
if T (¢) = =— (&), as will ordinarily be the case, then the following
20 lo

slmple relation exists between the natural frequencies in lagging and
flapping:

= 0P(Kp) — 02 | (168)

where ®; 1s the natural freguency (in cps) in lagging for any principal
mode, W (Ké is the natural frequency of the corresponding mode in
flapping with K, replaced by Ep, and Q 1s the rotor angular speed

(in rps here). Relation (1l6a) is valid for fixed—ended blades as well
as for blades with both flapping and lagging axes hinged.

From equation (11) for flapping, it is evident that relation (16a)
can also be expressed in the following form for any principal mode
(characterized by subscript n):

®);% = gy ® + ®onz® (16b)
where
K
2 . 2 22
Pen1” = Penf” T (16c)
1
2 _ 2 2
Wony~ = Dopg- — 9 _ (164)

The subscripts 1 and f refer, respectively, to the values in lagging
and in flapping. Thus the elastic contribution to the square of the
lagging frequency of.any principal mode is the same as the elastic
contribution. to the square of the corresponding flapping frequency,
except that the former 1s proportional to Kp while the latter is
proportional to K;. This fact 1s represented by figure 7. From
equation (164) it follows that the centrifugal contribution to the
square of the lagging frequency of any mode 18 less by a fixed

smount (02) +than the centrifugal contribution to the square of the
corresponding flapping frequency.

From equation (16a) it follows that if K, =K; (as in single—
tubular—spar sections) then the lagging frequencies of all principal
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modes will be lower than the corresponding flapping frequencies. In
the fundamental mode, where wp=x Q@ (because of the actual low values
of the bending-stiffness parameter Kj), the lagglng frequency will be
very low. In the higher modes, however, the difference between the
flapping and lagging frequencies, if K; = K, becomes relatively less

and less. If, on the other hand, Kp >> Ky (as for structural alrfoil
sections) then the natural lagging frequencies will be greater than the
corresponding flapping frequencies, often even in the fundamental modse.
In that case, in fact, the following simple relation will be wvalid for

the high modes: wz2 1 ;?-wfz.
—=5_ 1

I I
It may be remarked that if K; =K, and = (&) = L (&), then
I T1o
the principal modes of deflection of the free undamped uncoupled lagging
vibrations will be exactly the same as those of the corresponding
flapping vibrations, provided of course that the root conditions of the
blades be the same (e&g., both fixed-ended or both hinged) in both

flapping and laggling.

Effect of a small eccentrliclity.— If the blades are hinged at the
rotor axis of rotation then in the fundamental flapping mode, or = Q.
In this case, equation (l6a) implies wy = 0, signifying the gbsence of
a centrifugal restoring force. Such a situation is easily remedied by
attaching the blades at a small distance (eccentricity) e away from,
instead of at, the axis of rotation. The effect of such an eccentricity,
for both hinged and fixed—ended blades, can be expressed by the relation:

2 _ 2 K 2 _
aJ_—a)e=o +e(_£9 (17)

where w and Q are in cycles per second, e - %,

1 1

X12(g) 2 a) at
0 e o

1
A 2
jo AOX(g) e

uThe condition Kj = Ko 1s necessary only because of the small
effect of the centrlfugal loads on the modes of deflection.

=]
]

e
i
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and X(¢) 1is the mode of-deflection in flapping. ZEquation (17) is
valld for any principal mode in elther flepping or. lagging.

In accordance with the Rayleigh method, the natural frequency
in flapping w,p Of & flexurally weak cable (K; = 0) with € =0

can be expressed approximately? in the form:

"l
h/q TX12 gk
0

2 = Q2
[é}] =
( Cf)e =0 a

where

T(e) = ﬁ;ﬁ ak
1

Hence equation (17) can be written approximately in the form:

1 1
u/1 J[‘ ﬁi ae|x12 ae
2 2 0 3

=0y * € - @cf)€=o2 (18)

A 2
— & dg|X?
At dg

0 £

The coefficient of (wcf)€=o2 in equation (18) is almost independent
of the mode of deflection X(¢) and is greater than unity for any mode.

It is evident from equation (18) that an eccentricity of attachment
of* the blades increases the natural frequency of any mode in either
flapping or lagging and that this increase 1is _greater the higher the
mode, since w,p~ Increases with the mode. However, for the reason
already explained, this eccentricity effect is especlally important in
the fundamental lagging mode of a hinged blade or of & fixed—ended
blade with & low bending stiffness K, in the plane of rotation.

For the fundamental mode, it is permigsible to substitute—X(g) = ¢
for hinged blades or X(&) = &% —L4e3 + 66° for fixed—ended blades into

DThe approximation 1n the equation consists In neglecting the
effect of the centrifugal loads on the modes of deflection.
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equation (17) or (18). If f—{; (&) = 1, then for equation (17) it

is thus found that g = 1.5 for a hinged blade and % = 1.558 for a

fixed—ended Dblade.

Damping characteristics.— In a mamner analogous to the derivation

of equations (12), (13), and (14) for flapping, the following values
can be obtained for the natural frequency and for the serodynamic and
the internal logarlthmic decrements In any damped principal lagging
mode (characterized by subscript n):

= \[(%)2 - @%{;)2 (19)

7.
Bgn = X infn_n (20)
Wng
-
8, = "8y =5 (21)
in
ay” -
where
. 1
- _ c
7m=z(cd01 co—rn (&) at
0
1
G = | 3T
0

and Y _(t¢) is the undamped mode of deflection in lagging. The value
of the ra.tio 7. /‘ is almost Independent of the deflection

shape Y,(t).

Since in actual cases the quantity (7.,/28;)? Will be negligible

in comparison with (mno/8)2 1t follows from equation (19) thet the
effect of damping on the lagging frequencies 1s in general negligilble
in all modes. The logarithmlic decrements in legging will vary with the
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mode of vibration in & manner quite similar to thatin flapping (see
BENDING VIBRATIONS IN FLAPPING). It must-be observed, however, that the
magnitude of the total (1.e., aerodynamic plus internal) damping is, iIn
the lower modes, much smaller than that in flapping. The value of By
(Cdo)y @nr

T ®n3
flapping. In the fundamental mode, this ratio may be about-1/30. The
internal damping 1in lagging 1s at least of the same order of magnitude
as the aerodynamic damping in the fundamental mode of fixed—ended hlades
and ls therefore relatively mich more important in lagging than in
flapping.

in lagging 1s, in fact, of the order of times that in

Numerical example.— For the uniform blade with the date in figure 2
and € = 0.05, the values of the undamped natural frequencies in lagging
are plotted against the mode of vibration in figures 8 and 9 for hinged
and fixed—ended blades, respectively. The logarlthmic decrements in
lagging with (Qdo)l = 0.03 and gy = 0.05 are plotted In figures 10

and 11 against the modes of vibration.

Effect of torsional vibrations on lagging vibrations.— The free-
torsional vibrations of-mass—balanced blades have an effect on the free
lagging vibrations which is quite similar to that which they have on the
free flapping vibrations (see BENDING VIBRATIONS IN FLAPPING). This
effect; which 1s mathematically represented by the terms with 6 in
equation (1b), can, however, be shown to be negligible, because of the
very low order of magnitude of the relative amplitudes of the lagging
vibrations induced by the torsional vibrations.

CENTRIFUGAL, CORIOLIS, AND AERODYNAMIC COUPLING

BETWEEN FLAPPING AND LAGGING

In géneral, there will be centrifugal, Coriolis, and aerodynamic
forces which couple the flapping and lagging vibratlons of a helicopter
blade. These forces are represented mathematiiglly in equations (la)
and (1b) as follows: The terms A 6oV and foW represent the
centrifugal coupling loads per unit length of the blade; the

Vol W
terms 2 é%-zg— 4 and —2 A o' ¥ represent-the Coriolis load;

A1 Q

rc - H.ojx
finelly the terms —C = co[eo +6;) > ]Q
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and C

1 Qr /\Q 1
coupling loads.® A1l these loads are evidently of a relatively low
order of magnitude because of the actual low values of 6o and
?

W,
of —%—. Consequently, for a first spproximation, these coupling terms

may, as in the preceding two sections, be neglected in determining the
frequency and damping of any principal mode In either flapping or
lagging. The effects of the coupling on the frequency and damping
characteristics of. any mode can then be taken into account by making
the corrections described in the following discussion.

w -
L Ec_ 200 + 61 — 2 1,0)(1 - 3B R ?) represent the serodynamic
0

Effects of coupling on frequency and damping characteristics.— By
putting

w(t,t) = w(e)eP?

v(E,t) = v(&)eP?

Q
in
o

into equations (la) and (1b) it is possible to derive the following
expressions for the complex frequenciles Py and U1 for any

principal mode (characterized by subscript n) in flapping and in
lagging, respectively, wlth the simmltaneous coupling loads taken into
account:

1 3 = 1
§'qnf02(Fﬁn'_ ";)(Eﬂn - qn)" 5 Pnndoinro — Bn285°

an(_zlnfo2 - ino2><%ahqnfo +'7n)

Qrl T Lnro

(22a)

1 r 5 1 2. 2
§'qn102<h§n - nn)<éﬁn - Wn) =5 PnbMn9nio — Bn %

%1 = %nio
2Elrlano(qr:LZo _'qnfq>[7n + cr'n(q.nZo + qﬁfoi]
(22b)

©Tt may be noted from equations (la) and (1b) that the aerodynamic
loads directly oppose the Coriolis loads but do not in general cancel the
latter.
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where qpp, and 4q,;, are the complex values of g in the corre—
sponding uncoupled, though demped, modes in flapping and lagging,
respectively, and where a,, @,, . . . &re real constents for each
uncoupled mode defined thus:

1

]
nt

]
I
é;‘““o
|_.I
[
54
no
Y
e

1
— A
0
1 A .
I~ W,
By = ) =3 WyVp dt
Yo
1
rec 3 ¥i,0
nIl = C —1' -c—o-'<29° + ‘2"' 61 2 —-{-}-;-)ann deg
0
1l
c r,2
7n =C E; T'Wn d§
0

Here Wh(g) and Vﬁ(g) are the modes of deflection of the uhcoupled
flapping end lagging vibrations, respectively.

An advantageous property of equations (22a) and (22b) is that,
according to the forms of these equations, the numerlcal values of the
corrections to gnp, &nd gq,;, Wwill be rather insensitive to the

forms Wp(t) and vh(g) of the deflection shapes substituted into
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these equations., For purposes of & quick calculation it 1s therefore
suggested that the substitutions W,(t) = V() = ¢

and Wy(E) = Vn(t) = g’* ~ 43 + 662 be made for any mode for hinged
blades and for fixed—ended blades, respectively.

From squations (22a) and (22b) it is found that in general the
order of magnitude of the corrections, due to coupling, in the natural
frequency and logarithmic decrement of any principal mod? in flepping

W

or lagging will be that of sscond powers of 6, and —g— Thus, the

coupling will have what may be considered a second—order effect on the
frequency and damping characteristics of any mode. This effect may,
nevertheless, be quite appreclable In the fundamental lagging mode,
since the damping decrement (i1.e., the negative real part of gq) in

this mode is generally very small, while, 1f the bending stiffness
(represented by the dimensionless parameter Xp) of the blade in lagging
is small (as in the tubular-spar section, fig. 2) ths natural frequency
in this mode will also be low.

Numerical example.— Consider a uniform blade with the data in
figure 2. Also let @1 = 0.02, € = 0.05, and gy = g = 0.05. Then
from equation (3}, 6, = 0.1273.

(a) Fixed-ended blades: For the fundamental mode in flapping (see
Numerical exemple under BENDING VIBRATTONS IN FLAPPING and equation (17)),

1,105 f 1.105\2
Qo =~ 5 * 1 (1 + 12.36 x 0.00% + 0.05 X 1.558) ~ ( 5 >

= —0.553 + 0.90T1

For the fundamental mode in lagging (see figs. 9 and 11),

_0.178 X 0.357

930 = ox + 0.3571 = —=0.0101 + 0.35T7%

Putting W,(¢) = vl(g) = gl‘ — 43+ 6§2 and =t +€, it is found

ot 1
that: @ =& =B, =2.31, 0, = 0.7k, and y = 3.43.
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WLt i —_
Assuming —— (&) = 0.203 sin 5 t,7 1t 1s found that By = 0.h3k.
Substitution into equatlons (22a) and (22b) then yields:

d1p] = 91pp — (0.004 — 0.0341) = -0.55T7 + 0.9414

d171 = 970 — (~0.0048 + 0.02151) = ~0.0053 + 0.3361

The demping factor (real part of gq) in the fundamental flapping mode

is here evidently negligibly affected, while the natural frequency in
this mode 1s increased by about 3 percent. In the fundamental lagging
mode here, however, the already low damping factor is dangerously
diminished (by about-50 percent), while the already low natural fregquency
is also diminished (by about 6 percent).

(b) Hinged blades: In this case (see Numerical example under
BENDING VIBRATIONS IN FLAPPING and relation (17)),

Upo = -0.498 + 1 \/(1 + 0.05 X 1.5) — (o.l+98)2 = —0.498 + 0.9091

while (see figs. 8 and 10)

0.143 X 0.274

Q30 =— 5 + 0.2741 = -0.00623 + 0.2741

Putting Wy(E) =7V ,(&) =&, 1t 1s found that: o = o, = B = 0.333,
ny = 0.0775, and 7y = 0.464. Moreover, assuming —Q— () = 0.1318,

it-is found that B3 = 0.0439. Substitution into equations (22a)
and (22b) then yields:

Q151 = dpo — (0-0016 — 0.01081) = —0.496 + 0.9201

Q137 = 9170 — (—0.00535 + 0.02541) = ~0.00088 + 0.2491

w '
7;I'he expressions used here for —>~ () are based on a first

Yo
approximation for -2~ (&) as determined by the static equatlon corre—
sponding to the flapping equation (la) with the data assumed here.
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As in éxample (a) for fixed blades, the fundamental complex flapping
frequency ls here only slightly affected by the coupling, while in the
fundamental lagging mode, the natural frequency and especlally the
damping factor are appreclably diminished.

VIBRATIONS OF UNBALANCED BLADES — FLUTTER

When the center of gravlty of the cross sectlion of a blads does
not coincide with its aerodynamic center (Q # O) +then, as can be seen
from equations (la) and (1lc), the torsional vibrations will be aero—
dynamically coupled with the flapping vibrations. When such coupled
vibrations are unstable, flutter 1s sald to occur. In the present
section simple criterlons are developed for the avoidance of the
flutter of rotating helicopter blades. The analysis 1s, however, based
on quasi-stationary flow (as in the previous sections) and is therefors,
strictly speaking, approximately valid only for cases of low reduced

~ [OVc

frequencies “2’% ~ <§X§>, where V is the magnitude of the inflow velocity.

Baslic equations.—~ By putting

w(t,t) = w(t)ePt
o(t,t) = 6(&)eP®
a=F

into equations (la) and (1lc), and neglecting second—order terms there,
it is possible to combine these equations into a single stationary
condition. By application of the Raylelgh method, with the assumption

w(t)

2 X (&)
(23)

8(t) =b,Y (&)

for any glven principal mode (characterlzed by subscript n),
where X (£) 1s the corresponding uncoupled mode of deflection in
flapping while Yn(g) is the uncoupled mode of deflectlon in torsion,
the following linear equations are obtained for the coefficlents a,
and Db : )

n.
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a'n('In + qed.n + q_'yn> + an(Bn - cn) =0 (24a)

ah(Bn — “n) - %%(“n + qevn + an) =0 (24D)

where:
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1 1
_ J 2 Iney = Ipin Cor . 2
By = M (1 + igg)fn = Y 'c de + Mp — 35 ¥ a4 -
0 o_ 0 (Imax Imin)o
1 3 1 o 2
¢ [T\, 2 c (r
o | =@t a-3 | Z(Pma
TJo 0

with

1 1
Sorf d + 4
[4(zn)
0
= 1
J t
(J_ Y') at
0 o)

The condition for the existence of a non-trivial solution (a,
and b, mnot both zerc) to equations (2ka) and (24b) leads to the
following quartic equation in the complex frequency g <for the coupled
mode in torsion and flapping:

chqlL + c3g_3 + c:2<;_2 +c,a+0y=0 (25)

where

Cy = QpVp
C3 = QpAn + Ypvn

Co = Jnvn + Cpby + )“n7n .

Q
It

2
1 = Yphy F 7pkpy C(P, — ap)

Co = dpkn
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For the fundamentael coupled mode, the substitutions Yl(ﬁ) = gin % £
end Xi(&) = e g3 + 6t2 (fixed—ended blade) or X;(t) = ¢ (hinged
blade) may be made for the purpose of obtalning approximate solutions
for the cheracteristic velues of q from equation (25).

Stebllity criterions.— Neglecting internal damping at first, it
can besshown that the coupled torsional and flapping vibrations will be
stable” if and only if .

p > O (262)

while also
cl<cec3 - °l°h) - coc32 >0 (26b)

A simple method of-taking internal damping Iinto account after condi-
tions (26a) and (26b) have been considered is described in appendix C.

It may be noted that inequality (26a) corresponds to a necessary
end sufficlent condition for the stability of the uncoupled torsional

vibrations of-unbalanced blades, that is, for the prevention of
torsional divergence.

Tt appears convenient in practice to regard inegqualities (26a)
end (26b) as conditions governing the proper chordwise location of the
center of gravity of -a blade section with respect to the aerodynamlc
center, that is, governing the suitable values of Q or J. This is
in accordance with the results of references 8 and 9, where the chord—
wise mass distribution wes found to be the chief factor determining
the possibilities of flutter of helicopter blades.

If J = 0, thatis, if the blades are mass—balanced, then flutter
cannot occur, since there will be no coupling between the torslonal and
the flapping vibrations. If J < O, then 1t will be found that condi—
tions (26a) and (26b) are usually easy to satisfy, so that flutter will
not occur. IFP, however, J > O, that 1s, if the center of gravity of a
blade section is behind the aerodynamic center, then conditions (26a)
and (26b) may be violated and flutter will occur.

In this quasi-stationary type of analysis, there are two lmportant
stabilizing influences: The internal damping (proportional to gy
and g,) in bending and in torsion and especlally the aerodynemic
damping (proportional to A, or P) in torsion. Because of these

BInequalities (26a) and (26b) are the conditions that all the real
parts of q, as determined by equation (25), be negative, so that posl-—

tive damping occurs.
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influences, flutter mey be prevented even when the center of gravity
is behind, but not too far behind, the aerodynamic center of a blade
section. -

KNumerlcel example.— Consider a fixed—ended uniform blade with the

data in Pigurse 2. Then, with % = & (wvhere € = 0),

Xp(6) = €% — 13 + 6t2, and Y;(¢) =sin Lt for the fundamental

coupled mode, inequality (26a) leads to the condition J < 0.186. This
is the condition for the prevention of torsional divergence (with
internal damping neglected). Inequality (26b), however, leads to the
condition 0.15 < J< 0.16. Hence the critical value of J in this
case for the prevention of flutter 1s between 0.15 and 0.16. With
internal damping teken into account (gg = gy = 0.05) by the method of
eppendix C, the critical value of J 1is found to be between 0.16

and 0.17. To obtain some insight into the character of the flutter
vibrations in an unsteble case, suppose J = 0.17. Then two of the
roots of the complete quartic (i.e., including the internal damping
terms), equation (25), are found to be q = 0.123 X 3.971. This pair
of roots evidently corresponds to an unstable mode of vibration, since
the real parts are positive, indicating "negative aerodynamic damping,"
with a logarithmic increment of EEL%?{%%Eél = 0.1946. The relative
amplitudes of the flapping and torsional vibrations in this mode can
be obtained by substituting the values found for q into equation (24a)

or equation (24b). It is thus found that % = —0.021k F 0.00761,

indicating that the tip amplitude of the flapping vibrations is only

3 \/(0.0211»)2 + (0.0076)2, or 0.067 times the tip amplitude of the
torsional vibrations. This small ratio of bending amplitudes to
torsional amplitudes in flutter eppears to be a familier phenomenon.

(See reference 8.) The complex value of the ratio al/b illustrates,
of course, the well-known phenomenon of phase difference between the
coupled bending and torsional vibrations in flutter.

Critical speed.— In addition to the design viewpoint with respect

to chordwlise mass distribution for the prevention of flutter for a

given rotor angular speed Q, another possible viewpoint here is that

of the critical anguler speed. From this point of view, all paramsters,
including J, may be considered as given, except the rotational

speed @, which appears implicitly in the terms containing J,, wu,s Bn,
and y,. Conditlons (26a) and (26b) ther determine the critical range
of Q. If J> 0, for example, then condition (26a) in actual cases
gives an upper limit to the permissible valus of Q.
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Aerodynamic coupling between lagging and torsion. - It may be n
observed that to the order of approximation used in the analysis, there
is no aerodyneamic coupling between the lasgging and the torsional
vibrations, since the torsion equation, equation (lc), does mot contain
any terms in the lagging displacement v, or in derivatives of v. It
may be noted, however, that with higher—order terms such a coupling
would exlst because of & twisting couple cmacpﬂrce%, where Cimg o is

the moment coefficlent of a blade sectlon sbout the serodynamic center.
For airfoil sections for which op # 0, therefore, there will be

coupling between the lagging and torsional vibrations. Since,
however, v in equation (lc) and 6 in equation (1b) will ocecur as
products with other flrst-order—small quantitles, these terms will be
smaller than other terms appearing in these equatioms, indicating
that the coupling between lagging and torsion is in any case small.

CONCLUSIONS

From a theoretlcal analyals of the frequency and demping charac—
teristics of the free modes of vibratlions of fixed—ended and hinged
elastic hellicopter rotor blades in hovering and vertical flight, the -
following conclusioms are drawn:

1. The fundamental natural frequency in flapping of a rotating -
helicopter blade hinged at-the axis of rotation ls equal to the rotor '
angular speed. If the blade is fixed—ended at the axis of rotation,
then, unless its bending stiffness is unusually high, the fundamental
natural frequency in flapping will be only slightly higher than the
rotor angular speed. With aerodynamic damping neglected, the rigid—
body oscillations will be an exact mode of vibration in flapping of a
blade hinged at the axis of rotation.

2. The natural frequency of vibration in any principal mode in
flapping can he expressed approximetely by means of a simple egquation.
In this equation the centrifugal contribution to the square of the
natural frequency of & rotating blade in any mode is virtually the
same whether the blade 1s hinged or fixed at the root. However, the
elastic contribution depends on the boundary conditions at the root.
A simple method of calculating the natural frequencies of a rotating
beam in bending, based on these considerations, was developed.

3. A simple relation exists between the lagging and the flapping
natural frequencies of any undemped uncoupled principal mode of
vibration. .

9he discussion in this paragraph is valld whether the blades are
mass~balanced or not. ..
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4. If the blades are attached at a‘small distance (eccentricity)
away from the rotor axls of rotation, then all the naturael flapping and
lagging frequencles are increased. Thils effect 1s especially important
in the lagging motion of hinged blades, where there would otherwise be
no restoring forces in the fundemental modse.

5. The flapplng vibratlons are heavily damped serodynamically in
the lower modes, especially the fundamental. The intermal damping In
these modes is, in fact, negligible In comparison with the aerodynamic

deamping.

6. The aerodynamic damping in lagging is proportional to the
profile—drag coefficient of & blade section and is much smaller than

that in flaspping. Consequently, the intermal demping in the lower
modes of vibration in lagging is as lmportant as the aerodynamic

damping.

T. The asrodynamic logarithmic decrements in flapping, lagging,
and torsion diminish with the principel modes, In spproximately inverse
‘proportion to the vibration frequency.

8. In flapping and torsion, the importance of aerodynamic damping
relative to that of intermal damping diminishes with the principal
mode of vlbration. In lagging, however, this 1s not quite true in the
lower modes, since for flxed—ended blades of relatively low bending
stiffness in lagging the internal logarithmic decrement decreases
sharply from the fundamental to the second mods.

9. The centrifugal torque in & rotating helicopter blade usually
exerts a negligible effect on the natural torsional frequencies. There
is consldereble asrodynamic damping In torsion, due to the rotation of
a blade.

10. The effect of the free torsional vibrations on the flapping and
lagging vlbrstlons of mass~balanced blades 1s in practice negligible,
because of the relatlvely high natural frequencles in torsion.

1l. In general, Coriolis, asrodynamic, and centrifugal coupling
forces exist between the flepping and lagging motions of a rotating
helicopter blade. These forces have a second—order effect on the
flapping and lagging natural frequencles and damping factors, which is
nevertheless appreciable in the fundamentael lagging mode.
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12, If the blades are unbalanced, then the resulting coupled
flapping and torsional vibrations may be unstable 1f the cross—sectional
conter of gravity is too far behind the serodynamic center. Simple
criterions for prevention of such a type of flutter, based on quasi-
statlonary flow, were derived.

-

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., May 2, 1949
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APPENDIX A
TORSIONAL VIBRATIONS OF NONUNIFORM BLADES

Equation (5) cen be mathematically trensformed into the following
stationary condition:

1
5 m L g2 max =~ Imin - J

o 1J, +M2(Imax Iﬂﬂg""l—d§=0 (A1)

where B 1s here an operator denoting variation. By assuming any mode
of deflection to be expressible in the form of the seriles

o8 = 2 DestmkZg (22)
k=1,3,55---

the following set of linear homogeneous equations, written in matrix
form, is obtained in: the coefficients Dy:

[Im + qgvm] 31=0 (£3)

with m21, n2l, and m, =n,., and Vhere I and v, ave
constants defined thus:
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' 2
= Mi < m X cos =X £ cos %; EdE +

I
m Jo 4 2

0

v )
Inax — Imin

o (Tmax = Tnn),

mn nx
sin 5 £ sin Zs-g at

Mo

1 J m nx
anEf -E;sin-é—gsin—é—gd.g
0

It will be found in actual cases that the Mp~term in the expression
for I, is negliglble in comparison with the M, —term.

Equations (A3), written out explicitly, look thus:

bl(Il3 + q?vl3) + b3(133 + q2v33) + ...+ bn(;n3 + quﬂ3) +...=0
bq(I,_ + ¢V ) +b (I + q?v ) + o .0+ (I, + Py ) + . =0
iltin in 3\"3n 3n n nn
The condition for the existence of a non—trivial solution to
equations (A3) is that the determinant of the coefficiemts of these
equations vanish. This leads to the following determinant equation:
Iy + @V | = O . (ak)

Equation (Ahk)} determines the natural frequencies of the various
principal modes. Although equation (A%) is, for egxact calculations, of
infinite degree with an infinite number of terms, it will be found in
actual calculations that this equation is repidly convergent; that is,
that it suffices to use only a few terms in series (42) to obtain to a
sufficient-approximation the values of the natural frequencies of the
lower modes. This convergent property 1s one of the chlef advantages of-
the Rayleigh-Ritz method outlined here.
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APPENDIX B
MATHEMATTCAL DETAITS FOR BENDING VIBRATIONS IN FLAPPING

(a) Proof that relation (11) would be exact if and only if the
centrifugal loads would have no effect on the modes of deflection of &
rotating beam:

Suppose, first, that relation (11) is an exact general relation;
that is, suppose that the relation

qm? = dor® + Qen- (BL)
is in geneval exactly valid. By definition of ¢, and q,, 1t
follows fro.m equation (10) that
1
2 _ gTan')
%%n < "
]; ¥en
] ’ (32)
Iy
Kl=—vw “)
2 _ l(I.'Lo en
Qen ===
s

where wcn(g) is a principal mode (cheracterized by subscript n) of
deflection of a rotating caeble without bending stiffness, while wgpn(¢)

is the corresponding mode of deflection of a nonrotating beam. By
putting equations (Bl) and (B2) into equation (10), the following
equation is obtained:

I e) _ ¥ (I3 Ay W )
i ) - )|« Bty - eny] o

where w,(&) is the mode of deflection of a rotating beam with bending
stiffness.
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In order that relation (Bl) be exact regardless of the value
of- K} 1t 1s necessary that equation (B3) be satisfied for any value

of K3, and since wen(f) and wep(E) are independent of Xj, it is
therefore necessary that-the following two equations be satlsfied:

I it W 1]
( a "’n“) — L(-Z—]-'— Wen") = 0 (B4)
T1o ¥en\l1lo / )

%(Twcn')' - (Twn')' =0 (35)

The unique solution of equation (B4) for w,(t) satisfying all
of the boundary condltions is

vp(E) = wen(e) | (86)

Similarly the solution of equation (B5) for w (&) is

vo(8) = w(e) (87)

Equation (B6) proves that-relation (BL) could be exact only if the modes

of deflection of a rotating beam were exactly the same as those of the
same beam when it is stationary.

To prove the converse, suppose relation (B6) were in general
exactly valid. Then substitution of relation (B6), together with equa—
tion (B2), into equation (10) would lead to the following relation;

f;[(qnz - qéne)"‘en(g) - c-’-cne""cn(g)] + [(Twcn’)' - ('rwen’)':' =0 (8)

Observing that w, (8) end w,,(¢) ‘are functions not containing dgn®
1t follows from equation (B8) that w, . (¢) = w, (&), while

also ‘ln2 = qenz + qcng' Thus relation (B6) would imply relation (11).
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(b) Proof that relation (11) cannot be an exact general statement,
whether the blades are hinged or fixed—ended:

It has been shown that relation (11) implies relation (BT7). It
will be shown, however, that relation (B7) cannot be an exact general
statement because wep(E&) cannot in all cases satisfy the boundary
conditions wypn" = Wen'™ = O required at the free tip of a beam with
bending gtiffness.

By definition, w,,(&) satisfies the equation (cf. equation (10)):

- Twcn')’ * % q-onewcn =0 (39)

Differentiating equation (B9) three times with respect to £, noting
that 7! =_A%E‘ (for simplicity, it is assumed here that f— = g), and

assuming that wg " =w,, =0 at ¢ =1, the following relation is

obtained, where Wiy, (1%)1 , and derivatives thereof denote the values
of Wy (&), of ﬁ (¢), and of their derivatives at ¢ = 1

3(agy” *+ 1)(%)1"wl' + (%)mwl' + qcn2<7fg)m‘f1 - l;(f;-)lwli" =0 (B10)

Since Wyp(€) = wen(€), it follows from equation (B2) that

iv _ A) of {10\ W1
Ww = =2 — = Bll

Moreover, equation (B9) implies
wit = _qcnawl (B12)

By putting equations (B1l) and (B12) into equation (B10), the following
relatlon, required to be valid for any type of hlade in every principal
mode, 1s obtailned:
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h<§%)12qen2 = 3(qcn2 + l)qcn2<£%>l

It 18 evident that relation (B13) cannot be valid in 5enerallo since,

(X
K ﬂ—o)l (B13)

1t
for example, in the case (f%- 2 0 equation (B13) leads to an
1
absurdity, the left slide belng negative while the right side is positive

or zero.

(c) Proof that there are no exact vaelues of qcn2 for a fixed—
ended blade:

If there were exact values of qcn2 then these would satisfy
equation (B9), with the appropriate functions wg,(¢). However, for
fixed—ended blades, Ww,,(0) = w,,*'(0) = 0. Hence from equation (B9)

1t follows that w,,(&) would have to satisfy also the condition
tion wy,"(0) = 0. Moreover, by successive differentiation of equa~
tion (B9), it 1s seen that all of the derivatives of wy,(E) would
have to vanish at the root of the blade. Hence w,,(¢) =0. This

indicates that there cannot be any exact values of qgn® with corre—
sponding functions w,,(&) satisfying equation (B9) for e fixed—ended
blade.

(d) Numerical check on accuracy of approximstion of relation (11):

Equation (10) can be mathematically transformed into the following
gtationary condition:

1
I .
5 {% K —o w2 4 2 7yt2 +l-iA-q2w2} at = 0 (B1k)

0 .
The Rayleigh-Ritz method can be applied to condition (Bl4) by setting

w = ZaX (&) (B15)
where X (&) are given functions satisfying the boundery conditions,

107here may be special cases in which equation (B13) is valiad.
For example equation (Bl3) may, for a given blade, be valid in one
particular mode, as I1n the Sundamental mode of a hinged blade,
where qela = 0 while gq,1° = ~1.
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The most general sets of polynominals Iindependently satisfying the
boundary conditions for fixed—ended and for hinged blades are:

fixed~ended:
Zy(8) = B =L nln - 1)@ -2)83 + L n(m - 1)(m - 3)¢° |
m2 L
finged: . (B16)
Z,08) = %+ Z mlm = )(m - 1)e3 - L n(m - 1) (m - 3)et
m=l{i6,L...
J

The Rayleigh-Ritz method (see, for example, reference 10) was
applied here for fixed—ended blades with the first three terms of eque—
tions (B16) in series (B15). By substituting the series for w into
the integrand of condition (Bl4) and differentiating this integrand
with respect to each of the three coefficlents a , & set of three linear
homogeneous equations in &, was obtalned, the vanlshing of whose
determinant led to & cubic equation in the negatlive squared natural
frequencies q2. By investigating the solutions of this cubic, it was
found that all the three roots could, to a high degree of approximation,
be expressed in the form qn = —fonKy — fon where £, and f,, were
positive numbers, independent of Kj. This verified rela.tion (11),
since the quantity —f,pK; could then be interpreted as q.en » while

the quantity —f,, could be interpreted as q-cn

(e) Effect of root conditions on centrifugal contributions to
netural frequencles:

As can be seen from reference 5 (appendix), the values of gq,p 2
in relation (11) are independent of whether a blade is hinged or fixed
at the root, since the only boundary condition which can in an exact
solu'bion, 'by Bessel series, be satisfled by equation (B9) for wgn(E)
= 0. It is significant to check whether the approximate
methog'tl u'tlined in item (4) leads to the same results in actual calcu—
lations. For this purpose the stationary condition, equation (Bld4),
with K = O was applied by using four terms in series (B15) with xm(g)
for fixed.—end.ed. blades and then with xm(g) for hinged blades (see

equations (Bl6)). For fixed—ended blades the following values of Clcng
were obtained for the first two principal modes: qcl = —1.035

and %22 = —6.,21, Tor hinged blades, the corresponding values obtained
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were qcl2 = -1 and q022 = —6.05. Thus the values of Qen (n = 1,2) -

obtained by using series (B1l6) for fixed—ended blades were within
2 percent of those obtalned by using the series for hinged blades.

As & further numerical check the Rayleigh-Ritz method was applied
to condition (Blh) with K; = 0 with the first four terms in
series (B15) with :

Xm(E) = €

m.z'l

(BLT)

This series satisfies only the single boundary condition of zero
deflection at the root. The roots obtained for dcp 1in the first

two modes were: q012_= -1 and qc22 = —6. Thus the simple series,

equation (B17), led to nearly the same results as either of series (B15).

It can, in fact, be shown that for a constant-or linearly varying cross—

sectional area the values of qcn2 thus obtained in any mode will be

the same as the exact values obtalned by Bessel serles, provided a -
sufficient nunber of terms 1s used in series (B1T).

(£) Method of calculating naturel frequencies of any mode for .
rotating blade of variable cross sectlon: ' |

By making use of relation (11) and of the fact that the centrifugal
contributions g,,2 ~to the negative squared Hatural frequencies are
negligibly affected by the root conditions of-a blade, the Rayleligh-Ritz
method applied to condition (Bl4) leads to the following approximate
mothod of calculating the elastic, negetive squered frequencies ggn°.
The values of qen2 1 é&re ‘the roots for q2' of the determinantal

equation:ll

1lppe determinant in equation (B18) is obviously dlagonally
symmetric. - N
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2
J117%1 ¢ J15+°‘15‘12 Jgrned e e Ipeayd®
2 2 2
Ty +0l @ J554-m55q_2 Togtisgd Cee T d
2 2 2 s| 0 (=29
It Jest%st  Jgetet “ e gt
J, @ 7 P Tl J 2
K1k 5T T ek e

where

1 Il .
g, = —= (£ )X " X" E
hi fo Ilo ( ) h (§) i (g) da

. 1
g Ef ﬁ (8)xn(8)X4(8) de
0

and Xp(g) or X;(t) 1s given by serles (B16), which satisfies all of
the boundary conditions in bending.l2

The values of q,,° &re the roots for ¢ of the determinantal
equation:

2 2 2
Tq1+0q1@ T1ot%0a Tp3+2134 c e Tygbagd®

. 2 2 o 2
Toy+01q Tootiond To3+an3d <o Toytana

2 2 2 : 2 ° (319)
Ty +0330°  Typttapd™  T33#disaq < v o Tapiagq

2 2 2 2
Ty1+%y39 Tyot®0d Tq3t%,3a - oo Typtega

127¢ the blades are fixed-ended instead of hinged at their roots,
then, according to series (B16), the subscript 1 in the determinent in
equation (B18) should be replaced by the subscript k.
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where

1
Tp, = T(E)Xot (£)%g" (6) g

wlth
1
T(¢) = f% (&)
g

R

ag

and Xa(§) or Xg(g) is now given by the simple series, equation (B1T),
which satlsfies only the condition of zero deflection at the root. In

equation (B18), (k — 3) is the number of terms used in series (B16),
while in equation (B19), ? is the number of terms used in series (BLT).

The chief advantage of the method outlined is that the convergence
is rapld, even for modes above the fundamental. Consequently, only
relatively few terms need be used in actusl cases in series (B15) to
obtain the natural frequencies to a sufficlent approximation. Suppose,
for example, it is desired to obtaln the natural frequencles for the
three lowest modes. Then one flrst chooses k =3 and 1 = 3. The
three velues of q2 obtained from equations (B18) and (B19) represent
the values corresponding to the three lowest modes. The two lowest
values of q2 will usually be more accurate than the third. To improve
the accuracy one then chooses k =4 and 1 =L and obteins agein the
roots for q? correspondirng to the first three modes, as well as an
additional root corresponding to the fourth mode. It wlll usually be
found that at least the two lowest roots for g2 +thus obtained are
negliglbly different from the two lowest rocts obtalned with k = 3
end 1 = 3. Thls means that the natural frequencles of at least the
two lower modes have been determined with sufficlent accuracy. The
natural frequency of the third mode could be obtalned to a still further
egpproximation by taking k =5 and 1 =5. In general it can be stated
that, if for k =k (say) and for k =k + 1 +the s lowest roots
for ¢ of~eq%ation.(318) are practically the same, then these are the

values of gfg- for the s lowest modes., The method is simllarly
1
valid for q. 2.

If the order of the determinant in elther equation (B18) or (B19)
18 higher than three, then experlence has indicated that a convenient
method of solving the determinantal equation for any root is by
systematic trial and error. One chooses two values of g2 which are
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believed to be fairly close to an actual root and evaluates the deter—
minant for each of these values. The value of q_2 then obtained by
linear interpolation (preferably) or extrapolation, according to which
the determinant would be zero, will then be a closer approximation to
the actual root.

A convenient method of evaluating a determinant of any order is
to transform it into a triangular form. This method will be illustrated
here for a third—order determinent. Consider the determinant

81 8 23
a a

D=1%2 % &

®13 %23 B33

It is desired to obtain a determinant equal to D where the slements
in the present position of 8515 531, and a32 will be zero.

Mnltiply the first colum by 851 /all and then subtract this columm

from the second columm. Also, multiply the first columm by a3l /all
and subtract it from the third. Then a determinant of the following
form is obtained:

In D' now multiply the second colum by P3p /boo  and subtract 1t from
the third columm. Then the following result is obtained:
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= = =18 b =
D D‘ "D" - 12 22 —a-llob22¢ 033

a b ¢

13 23 33

These calculatlons should be performed with & sufficlent number of
significant figures to avold any large errors due to relatively small
differences.,
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APPENDIX C
INTERNAL DAMPING IN UNBALANCED BLADES

The characteristic eguation, equation (25), including internal
demping can be written in the Form:

Fl(Q) + 1F5(q) = 0 (c1)

where Fy &and Fp are polynominals in q with real coefficients.
The effect of internmal damping is represented by Fo.

Since IFQ(Q)I<K [Fl(q)], equation (Cl) can be solved for q to a
good approximation by applying Newton's method as follows. The equation

Fl(Q) =0 (c2)

can be solved first. Suppose one of the roots thus obtalned is Q-
Then a corrected value q; of gq, due to the internal damping will be

4 = 9 Falao) (c3)
L= q -
F1'(%) + 1F"(90)

Equation (C3) can be used to determine the critical value of J
thus. Suppose that from condition (26b) it is Ffound that to prevent
flutter it is necessary that J < J, (say). Then Jo 1s the critical
value of J with internal damping neglected. To teke internal damping
into account, slightly higher values of J may be chosen, and the
corresponding roots of the quartic, equation (25), including internal
damping can then be obtained by means of equations (C2) and (C3). The
minimm value of J for which at least one root of the complete quartic,
equation (25), will have a positive real part will be the critical
value of J with intermal damping. :

Near the critical value of 3, the imaginary part of q, Wwill
generally be much greater than the real part, so that the actual -
computations can be simplified by putting 4, = 1o (v real) in
equation (C3).
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Figure 1,- Cross section of a blade.
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Figure 5,- Aerodynamic and internal logarithmic decrements of hinged blade
in flapping, Constant cross section; K1 = 0.00400; e = 0.05.
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Figure 8.- Aerodynamic and internal logarithmic decrements of fixed-ended
blade in flapping. Constant cross section; K; = 0.00400; e = 0,05.
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Tigure 8.- Lagging frequencies of hinged blade. Constant cross section;
K2 = (0,00400; ¢ = 0.05. ‘
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Figure O.- Lagging frequencies of fixed-ended blade. Constant cross section;
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Figure 10.- ‘Aerodynamic and internal logarithmic decrements of hinged blade
in lagging. Constant cross section; Ko = 0.00400; € = 0.05,
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Figure 11,- Aerodynamic and internal logarithmic decrements of fixed-ended
blade in lagging. Constant cross section; Ko = 0.00400; € = 0.05.
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